
Spring 2022 EECS 151 LB FPGA Lab: Final Project Report

Meng-Hui Chou, Viraj Ramakrishnan

April 23, 2022

Contents
1 Project Functional Description and Design Requirements 1

1.1 Three-Stage Pipeline Structure 1
1.2 Memory Hierarchy 1

2 High Level Organization 1
2.1 Block Diagram 2
2.2 An Instrcution’s Life Cycle 2
2.3 Module Hierarchy 3

3 Detailed Description of Sub-Modules 4
3.1 Control Logic 4

3.1.1 Input Ports 4
3.1.2 Output Ports 4

3.2 Forwarding Logic 5
3.3 I/O Memory 6
3.4 Wires/Muxes/Registers 6

3.4.1 CSR External Wiring 6
3.4.2 BIFshMux 6
3.4.3 CMux 6
3.4.4 Inst Register 6

3.5 Optimizations 6
3.5.1 No-NOP 7
3.5.2 No-Forwarding 7
3.5.3 Parallel Memory Address Calculation 8

4 Results 9
4.1 CPI, Clock Period and Area Utilization 9
4.2 Critical Path 10

5 Conclusions 10
5.1 Reflections 10
5.2 What’s Next? 11

6 Division of Labor 11

Appendix A: The Implementation of Control Signals 12



SP22, EECS 151 LB, Final Project Report                                                                  Meng-Hui C., Viraj R.

1 Project Functional Description and Design Requirements
Our design objective was to create a three-stage pipelined CPU that implements the RISC-V ISA.
Because the memories have synchronous reads and writes, we had to place pipeline registers for other
signals that would cross from one side of these memories to the other. This causes three stages to emerge:
the Fetch, Execute, and Writeback stage.

1.1 Three-Stage Pipeline Structure

To make a three-stage pipelined CPU, we decided to pipeline at IMEM block and DMEM block to
account for the synchronous read and write operations. To divide the first and the second stage, registers
are put between all the wires between the IMEM/BIOS block and BIFshMux block. For the division of
the second and the third stage, registers are placed between all the wires between the MEM block and the
DBMux block.

To account for the delay of data coming from the previous stage, some signals such as, but not limited to,
BISel, FlushSel, and RegWEn coming from the control logic are stored in registers before they reach the
target components. All control signals that are affected by this implementation can be found in 2.1 Block
Diagram, whose paths to target components are blocked by a register in the midway.

1.2 Memory Hierarchy

The memory was divided into four separate parts: BIOS, IMEM, DMEM and I/O memory. Using the
upper bits of the memory address, the memory that was to be written to / read from was decided. UART
was then used to read and write from the I/O Memory, allowing for interaction with devices outside of the
CPU.

2 High Level Organization

When designing a big project, it is nice to kick off with a high-level road map so as to maintain
abstraction, coherency, and hierarchy.  As so, we started the project with drawing out a dedicated block
diagram. After making a draft diagram, we then start to write up codes in Verilog. The diagram played an
important role not only in debugging but also communication between partners as it could cleanly show
what we had in mind and what we had on table so far.

1



SP22, EECS 151 LB, Final Project Report                                                                  Meng-Hui C., Viraj R.

2.1 Block Diagram

Figure 1: 32-Bit Three-Stage Pipelined RISC-V CPU

A block diagram of our designed CPU is shown in fig. 1. The diagram shows all details including
modules decomposition, wiring, multiplexer, input and output signals of each module, name of each
multiplexer and pipelined registers. The pipelined stages may not be clear by the first glance, but the
division of the first and second stage is between IMEM/BIOS and BIFshMux and the division of the
second and third stage is between the second part of MEMs and DBMux. More details can be found in 1.1
Three-Stage Pipeline Structure.

To clearly distinguish data signals and control signals, wires were labeled in blue if they are control
signals while in red if they are data signals. The arrows show the direction of signals. Input signals of a
module can be found if arrows point toward the module itself while output signals are arrows pointing
outwards.

An overview of the block diagram, please continue reading 2.2 An Instruction’s Life Cycle.

2.2 An Instrcution’s Life Cycle

Based on the block diagram in fig. 1, an instruction’s life cycle starts from pc reg, data outputted by
PCMux will first stored here before going into the main part of the CPU, and then IMEM/BIOS will fetch
the instruction based on the pc that pc register just feeds in. BIFshMux will, then, take care of choosing
the right instruction for the later part or flushing the instruction due to a jumping from previous

2



SP22, EECS 151 LB, Final Project Report                                                                  Meng-Hui C., Viraj R.

instruction. After that, the instruction will be decomposed into pieces and be fed into different ports in the
Register File, Immediate Generator, Control Logic, and CSR Unit for evaluation.

After all the hard work, Branch Comparator will take whatever dataA and dataB that are outputted from
the register file and do evaluation even if the instruction is not a B type. Meanwhile, forwarding logic
determines if there is a need for forwarding data due to possible hazards happening. AMux and BMux
will choose the right data based on selection bits outputted by forwarding logic and send the data to ALU
for further calculations. After data passes the execution stage, memories will see if there is a need for
pulling or updating memory data based on instruction and data calculated by ALU. After that, DBMux
will mux out the right data from memories and LdMux will mux out the right portion of data based on
instruction’s functionality. Finally, WBMux chooses the right data from either registers or memory and
puts them back to the register file for future use.

For detailed information on what each module does, please continue reading 2.3 Module Hierarchy or 3
Detailed Description of Sub-Pieces.

2.3 Module Hierarchy

We divided the pipeline into several modules, the most important of which we have enumerated here. The
most important of these will be expanded on in further detail in 3 Detailed Description of Sub-Pieces.

● The Control Module takes as input the instruction in the Execute stage. It sets the control flow for
the rest of the datapath.

● The Forwarding Module takes as input the instruction from the Execute stage, and the Writeback
stage, and the outputs that the Control Module supplies the AMux and BMux to select the correct
inputs for the ALU. It then outputs the control logic for the AMux, BMux and CMux (necessary
for controlling the data input to memories). It allows for the forwarding of data from the
Writeback stage that would not otherwise have been accessible in the Execute Stage.

● The Arithmetic Logic Unit takes as input two numbers, and performs a mathematical operation on
them.

● The Immediate Generator processes the instruction in the Execute stage, and outputs the correct
immediate for a given instruction.

● The Multiplexer was an abstraction barrier we created - instead of using case statements or if
statements, we encapsulated this in a module for better readability.

These submodules provided abstraction barriers that maintained the code’s readability, and allowed us to
easily test the functionality of different components. Furthermore, creating these modules gave us
flexibility to change implementation while optimizing the CPU. More descriptions on sub-modules can be
found in 3 Detailed Description of Sub-Pieces of the report.

3



SP22, EECS 151 LB, Final Project Report                                                                  Meng-Hui C., Viraj R.

3 Detailed Description of Sub-Modules

As mentioned in 2.3 Module Hierarchy, we decomposed our CPU into a few modules so as to maintain
code readability and abstractions. More details on sub-modules are provided below.

3.1 Control Logic

This is one of the key modules in the pipeline, as it has effects across all stages, and orchestrates the
operation of the CPU. In terms of our abstraction barrier, the control module provides control signals to
other sub-modules. The control logic was implemented combinationally, so as to respond to an input
instruction immediately. We distinguished different signals based on the funct and opcode fields of the
input instruction and then fed the appropriate control signals into appropriate ports of sub-modules. For
details on input and output ports of control logic, please refer to the block diagram, descriptions below for
each port, and Appendix A: The Implementation of Control Signals.

3.1.1 Input Ports

● Inst: A 32-bit wide instruction decoded from the second stage.
● BrEq, BrLt: A 1-bit wide signal sent from subcircuit Branch Comparator where branch conditions

are evaluated.
● aluData: A 32-bit wide data coming out from ALU. This is used to determine which memory is

being written to, as well the offset of the memory access.

3.1.2 Output Ports

● PCSel: A 1-bit wide signal that is sent to PCMux to choose data between pc adder or ALU based
on Inst’s instruction type or the branch conditions.

● BISel & FlushSel: BISel is determined by the 30th bit of Inst (inst[30]). If inst[30] == 1, BISel is
1 and thus an instruction is read from BIOS. If inst[30] == 0, BISel is 0 and the IMEM instruction
is chosen.

FlushSel is determined by if there is a jump instruction. Jump instructions are B type instructions,
as well as jal and jalr instructions. For B type instructions, if a branch is taken, FlushSel turns
into 1 and a no-op is muxed into the instruction. As jal and jalr are mandatory jumps, a no-op is
automatically muxed in.

● ImmSel: A 3-bit wide signal which is sent based on Inst’s instruction type.
● RegWEn: A 1-bit wide signal that is determined by the functionality of Inst. CPU performs a

write if RegWEn is 1 while a read if it is 0.
● BrUn: A 1-bit wide signal that is determined if Inst is an unsigned version.
● ASel, BSel: A 2-bit wide signal that is used as selection bits for A/BMuxs, however, the

implementation is slightly different from the course’s. Instead of going directly to A/BMuxs, it
goes to forwarding logic first so as to check if we have to modify the signal if forwarding
happens.

● ALUSel: A 4-bit wide signal sent to ALU sub-circuit based on the Inst’s calculation requirement.

4



SP22, EECS 151 LB, Final Project Report                                                                  Meng-Hui C., Viraj R.

● MemWR: This 4-bit wide signal is sent in a format xxxx to determine which bytes in port dataW
or data stored in I/O MEM we have to write into memory or UART transmitter. For example,
0000 means we do not perform any write while 1100 means we write the upper 16-bit data to the
destination address.

● DBSel: A 2-bit wide signal that is sent to DBMux which allows CPU to choose data between
DMEM, BIOS, and I/O MEM based on aluData, the destination address in this case.

● LdSel: This 3-bit wide signal is sent to choose which bytes of data at the aluData address we
should load into the destination register based on instruction.

● WBSel: A 2-bit wide data that is used as a selection bit for WBMux to choose between data
outputted from DMEM, alu register, and pc+4 register.

For the implementation of control signals, please refer to Appendix A: The Implementation of Control
Signals at the end of report.

3.2 Forwarding Logic

The forwarding logic is specifically designed to eliminate all Data hazards. Structural Hazards are
handled by separate memories, and sufficient ports to and from memories. Data Hazards are handled by
stalling (in this current, unoptimized pipeline). After much experimentation, a few design decisions were
made, listed here.

Firstly, the decision was made to have the forwarding logic take the outputs of the control logic as inputs,
as opposed to controlling separate muxes in the pipeline. At a block diagram level, this allows us to
interpret the Forwarding Logic as simply modifying the control logic signals to correctly handle data
hazards.

Secondly, the forwarding actually only draws from one place - the wire that writes back to the Register
File. Whereas some implementations of a 4 or 5-stage pipeline have separate forwarding wires for
DMEM outputs and ALU outputs, our implementation only needs to pull from one place. This is a luxury
afforded to us by the fact that we have a 3-stage pipeline. We are ready with the value to write back to the
register in the next cycle after an instruction is in the execute stage, meaning that this is the only value we
need to pull in. This value is therefore added as an option that can be muxed into the inputs of the ALU,
which the Forwarding Logic can then control. This design decision was advantageous over previous
attempts, because it meant that the handling for any Data Hazard was basically identical (save for store
instructions). Anytime there was a register that had been written to in the previous cycle, we simply fed
the value bound for it into the appropriate input of the ALU or memory. Special care had to be taken to
identify that no-ops were not perceived as a write to the register file.

3.3 I/O Memory

We chose to implement I/O memory as a set of registers. Because of the relatively unsophisticated
methods of data storage and access, it seemed simpler to maintain a set of registers to represent the

5



SP22, EECS 151 LB, Final Project Report                                                                  Meng-Hui C., Viraj R.

memory at the desired addresses in I/O memory. This was a useful simplification, as instead of repeated
memory accesses, we only needed to write basic sequential logic to achieve the effect of an I/O memory.

3.4 Wires/Muxes/Registers

The wiring, multiplexers and registers of a CPU are essential to its functionality, and several design
decisions were made here, both to improve the functionality of the system, and also to handle the
complexity of the system most efficiently. The most important decisions are listed below.

3.4.1 CSR External Wiring

Since a CSR (control status register) is some state that is stored independently of the register file and the
memory, we decided to handle the CSR instruction separately. The CPU takes the output instruction of
BIFshMux and determines if it is a CSR instruction. If the instruction is a CSR, data will be written into a
separate register (storing it into the tohost address) instead of ones in the register file.

3.4.2 BIFshMux

We eventually combined the BISel and FlushSel signals together for optimization and organizational
purposes. This mux essentially resolves which option we are going to take: an instruction from BIOS,
from IMEM, or a Flush.

3.4.3 CMux

To implement forwarding of store instructions, it was necessary to forward the value being written back
into the input of the memories. Thus, we created a mux to decide whether to pass register or forwarded
values into memories. The selection bit of this mux is computed from forwarding logic instead of control
logic because the forwarding logic block decides whether forwarding is occurring - it makes the most
sense to therefore have that control this mux, as it already controls the select bits for AMux and BMux.

3.4.4 Inst Register

This register was added to help the forwarding logic check for data hazards.We have to know at the time
where the current instruction is being executed if the current instruction creates hazards with the previous
instruction. With this implementation, we can get a copy of previous instruction and use it as a reference
to compare with the current instruction.

3.5 Optimizations

To discover the pros and cons of different optimization choices, there are three optimizations that we
made to our CPU: No-NOP, No-Forwarding, and Parallel Memory Address Calculation.

6



SP22, EECS 151 LB, Final Project Report                                                                  Meng-Hui C., Viraj R.

3.5.1 No-NOP

The reference diagram is shown in fig. 2. The concept of this optimization was to push CPI as low as
possible (while potentially sacrificing some clock speed. The concept is as follows: because there is no
separate Fetch and Register Read stage, the result of the branch comparison (and therefore whether a
branch is taken or not, as well as the address we’d be jumping to) are available in the next cycle. We can
therefore avoid all stalls by simply passing in the correct address into the memories.

Figure 2: Our Designed CPU with No-NOP Edition

Several things changed in the pipeline to achieve this. The major difference is that now we have
SwitchSel, which decides whether to use the value from the PC register, or the calculated new location
from the ALU. An additional optimization was that we eliminated the flush mux, and effectively moved it
into the Fetch stage. Because the Execute stage is the longest (see 4 States and Results for more details),
this load balanced the stages somewhat, and improved clock frequency.

3.5.2 No-Forwarding

The reference diagram is shown in fig. 3. The concept of this optimization was to push CPI in the other
direction, to increase clock speed and perhaps suffer a hit to CPI. In this optimization, we experimented
with eliminating forwarding. The forwarding logic improves CPI, but it also makes paths somewhat
longer: additional logic performed by the forwarding logic delays the decision of the inputs into the ALU,
slowing down the Execute stage. In addition, the control signals are not ready until the writeback mux has
decided the correct value to write back. By eliminating forwarding (and just stalling whenever we
encounter a data hazard), we eliminate this issue.

7



SP22, EECS 151 LB, Final Project Report                                                                  Meng-Hui C., Viraj R.

Figure 3: Our Designed CPU with No Forwarding Edition

Several things changed as a result of this design decision. Several Muxes (AMux, BMux) were shortened,
and CMux was eliminated. The inputs to the AMux and BMux are also now smaller, and are available
sooner. To make the system work we needed to stall on data hazards, which proved difficult to implement.
The usual method of muxing in a no-op would not work, because it would lead to an infinite loop, as it is
the instruction in Execute that determines whether there is a data hazard: changing this instruction
removes the conflict, which un-flushes the instruction, repeating the cycle. To resolve this, we came up
with a new way to no-op: defanging the instruction at the memories and Register file. By preventing the
instruction from writing to anything, we discovered, it was as if the instruction never happened. We also
realized that we needed to ‘replay’ the instruction in cases where a data hazard had been detected (and
make sure that a hazard was not being created by this replay). This was achieved with a ReplaySel control
signal from control logic, which overrides the PC with the value from the previous cycle.

3.5.3 Parallel Memory Address Calculation

The reference diagram is shown in fig. 4.This optimization was driven by a desire to shorten critical path
times by changing resource utilization. We noticed that our critical path involved a memory address
calculation, in a write to memory. To eliminate this issue, we devised a way to separately calculate the
offsets of memory addresses. Because the ALU takes up so much time, if we made a simple adder in
parallel, we could simply use the result of this adder when memory access instructions happen.

Crucially, to shorten the critical path, we can replace the add instruction that usually happens in the ALU
when there is a memory instruction with a quicker operation, such as an or.

8



SP22, EECS 151 LB, Final Project Report                                                                  Meng-Hui C., Viraj R.

Figure 4: Our Designed CPU with Parallel Memory Address Calculation Edition

As can be seen in fig. 4, there is no wire from ALU to memory - this is entirely handled by the MemAddr,
which simply adds two inputs. Care must be taken to ensure that the ALU output is properly divorced
from the inputs to memories, to feel any effect of this optimization.

4 Results

In general, our CPU works in that it fulfills our design objectives. It avoids data hazards, and achieves
great CPI and speed on matrix multiplication.

4.1 CPI, Clock Period and Area Utilization

For our ‘vanilla’ implementation, we achieved a PERIOD = 18. This translates to 1000000000/18 =
55.6MHz. We achieved a CPI of 1.18 with this implementation. Our utilization of resources was as
follows:

● LUT Usage: 1416 (2.66%)
● Register Usage: 402 (0.38%)
● BRAM Usage: 34 (24.29%)
● DSP Usage: 0 (0%)

For our No-nop implementation, we achieved a PERIOD = 17. This translates to 1000000000/17 =
58.8MHz. We achieved a CPI of 1 with this implementation. We managed to achieve a better CPI and a
better clock speed (due to reorganization), meaning this is a clear improvement.

9



SP22, EECS 151 LB, Final Project Report                                                                  Meng-Hui C., Viraj R.

For our No-forwarding implementation, we achieved a PERIOD = 16. This translates to 1000000000/16 =
62.5MHz. We achieved a CPI of 1.24 with this implementation. Although we did lose some speed to
higher CPI, we made up for it with a significantly faster speed: on balance, this is 7% faster than before.

For our Parallel implementation, we achieved a PERIOD = 15. This translates to 1000000000/15 =
66.7MHz. We achieved a CPI of 1.18 with this implementation. Basically, for this one, we were able to
leave our CPI unchanged - but we managed to achieve a much lower period - this translates to an
improvement of 33%, which is quite significant.

4.2 Critical Path

In the ‘vanilla’ case, we found that the critical path was from the memory we were reading from (IMEM
or BIOS), through the execute stage (ALU, etc) to a memory we were writing to (I/O MEM, DMEM,
etc.). This was largely unchanged throughout the optimization process - although, when we added wires
in the No-NOP implementation to implement a CPI of 1, the critical path became the memory back to the
same memory (possibly because of the longer wires that were required to implement the optimization).

5 Conclusions

We have a lot to say about this project and here is the breakdown of our personal thoughts for now and the
future.

5.1 Reflections

We learned a lot from this experience.

(From Viraj’s side) This project is the most challenging project I have done in Berkeley so far. It really
tested my ability to deal with complexity, as well as my ability to assess how much time a task will take.

It has been the case in the past that the planning phase has defined the project, and I think this was
definitely the case for our project. Because both of us had a decent idea of what we wanted to create, and
how we were dividing the project up, we were able to make good quality, consistent decisions that helped
us build with clarity and consensus. As the project progressed, we feel we grew into the tools that had
initially seemed awkward and unintuitive, making the entire process far smoother. Our discovery of how
to use GTKWave remotely and access lab machines through X2Go drastically improved our efficiency, as
we were able to simulate remotely and quickly.

That being said, there were definitely places for improvement. We may have held back on testing too long
- because we didn’t want to build out the BIOS until later, we were essentially running off of IMEM the
entire time, which hampered our ability to test. Unit testing on the Forwarding and Control Logic were
insufficient to find some tricky bugs. Initially, the debugging process was excruciatingly slow. It was only

10



SP22, EECS 151 LB, Final Project Report                                                                  Meng-Hui C., Viraj R.

as we gained experience with what bugs usually looked like that we began to make debugging decisions
more quickly.

Aside from the designing and debugging process, we think that writing up a final report helps us organize
ideas better and have a chance to think thoroughly if there is a better way to improve performance of the
current choice. (From Meng-Hui’s side) Under the time pressure, given only two weeks to make the CPU
functional, we sometimes did not have time to slow down pace and really understand what our partner
had coded up. However, during the write-up, I was able to catch up what I missed from my partner’s part
and picked up concepts that I used to take for granted.

5.2 What’s Next?

If we are given one more chance to reverse our design, we want to try to combine No-NOP optimization
with parallel memory address calculation optimization. We expect the CPI will be exactly 1 and the
minimum clock frequency will still be 66.7MHz since we expect the critical path will stay the same, data
running from IMEM to DMEM.

We think the most we have to improve is to make each stage’s path more even so that a stage which
completes a task earlier does not have to wait the others that long before proceeding to the next stage. We
think that making our design into a four-stage pipelined CPU would be a relatively better choice in terms
of speeding up clock frequency since, based on how we pipelined the CPU, there seems to be no way to
make the second stage’s path even shorter. We expect that a four-stage pipelined CPU which has an
additional stage after the register file with parallel memory address calculation optimization could have a
better performance on clock frequency.

Regarding CPI, we originally wanted to try branch prediction optimization, but knowing that this choice
may not improve clock frequency and CPI and would be awkward in a three-stage pipelined CPU where
the fetch stage is back to back with the execution stage, we then stopped to explore other options.
However, in a four-stage pipelined CPU, implementing branch prediction is more reasonable as now the
CPU must be implemented with an injecting NOP feature so as to have the right behavior when
encountering jump type. As such, with branch prediction features in a four-stage pipelined CPU, we
expect CPI could be improved even further.

6 Division of Labor

Documents have been submitted separately on Gradescope.

11



SP22, EECS 151 LB, Final Project Report                                                                  Meng-Hui C., Viraj R.

Appendix A: The Implementation of Control Signals

Category Names of Signals Control Bits Actions/Comments

Inputs Inst none 32-Bit Instruction from Second Stage

BrEq 0 Branch is not equal

1 Branch is equal

BrLt 0 Branch is not less than

1 Branch is less than

aluData none 32-Bit ALU Data from second Stage

Outputs BISel 0 IMEM

1 BIOS

FlushSel 0 Not flush

1 Flush

ALUSel 0000 _add: signedA + signedB

0001 _sub: signedA - signedB

0010 _sll: signedA << signedB

0011 _slt: (signedA < signedB) ? 1: 0

0100 _sltu: (unsignedA < unsignedB) ? 1: 0

0101 _xor: signedA ^ signedB

0110 _srl: signedA >> signedB[4:0]

0111 _sra: signedA >>> signedB[4:0]

1000 _or: unsignedA | unsignedB

1001 _and: unsignedA& unsignedB

1010 _passA: unsignedA

1011 _passB: unsignedB

RegWEn 0 Do Not Write

1 Write

BrUn 0 Signed

12



SP22, EECS 151 LB, Final Project Report                                                                  Meng-Hui C., Viraj R.

1 Unsigned

ASel 00 Data from [rs1]

01 Data from pc

10 Data from Memory

11 Data from Write Back

BSel 00 Data from [rs2]

01 Data from Immediate Generator

10 Data from Memory

11 Data from Write Back

ImmSel 000 R Type

001 I Type

010 S Type

011 B Type

100 U Type

101 J Type

MemWR 0000 Do Not Write Any Bit to Memory

0001 Write Lower 8 Bits to Memory

0010 Write Second Lower 8 Bits to Memory

0100 Write Second Upper 8 Bits to Memory

1000 Write Upper 8 Bits to Memory

0011 Write Lower 16 Bits to Memory

1100 Write Upper 16 Bits to Memory

1111 Write Every Bit to Memory

DBSel 00 Data from DMEM

01 Data from BIOS

10 Data from I/O MEM

LdSel 000 Load Lower 8 Bits to Register

001 Load Second Lower 8 Bits to Register

13



SP22, EECS 151 LB, Final Project Report                                                                  Meng-Hui C., Viraj R.

010 Load Second Upper 8 Bits to Register

011 Load Upper 8 Bits to Register

100 Load Lower 16 Bits to Register

101 Load Upper 16 Bits to Register

110 Load Every Bit to Register

WBSel 00 Data from Memory

01 Data from ALU Register (2_3)

10 Data from pc+4 Register (2_3)

14



SP22, EECS 151 LB, Final Project Report                                                                  Meng-Hui C., Viraj R.

(SPECIFICATION)

Project Functional Description and Design Requirements

Describe the design objectives of your project. You don’t need to go into details about the RISC-V
ISA, but you need to describe the high-level design parameters (pipeline structure, memory
hierarchy, etc.) for this version of the RISC-V. (≈ 0.5 page)

High-level organization

How is your project broken down into pieces. Block diagram level-description. We are most interested in
how you broke the CPU datapath and control down into submodules, since the code for the later
checkpoints will be pretty consistent across all groups. Please include an updated block diagram (≈ 1
page).

Detailed Description of Sub-pieces

Describe how your circuits work. Concentrate here on novel or non-standard circuits. Also, focus your
attention on the parts of the design that were not supplied to you by the teaching staff. (≈ 2 pages).

Status and Results

What is working and what is not? At what frequency (50MHz or greater) does your design run? Do
certain checkpoints work at a higher clock speed while others only run at 50 MHz? Please also provide
the area utilization. Also include the CPI and minimum clock period of running mmult for the various
optimizations you made to your processor. This section is particularly important for non-working designs
(to help us assign partial credit). (≈ 1-2 pages).

Conclusions

What have you learned from this experience? How would you do it different next time? (≈ 0.5 page).

Division of Labor

This section is mandatory. Each team member will turn in a separate document from this part only. The
submission for this document will also be on Gradescope. How did you organize yourselves as a team.
Exactly who did what? Did both partners contribute equally? Please note your team number next to your
name at the top. (≈ 0.5 page).

15


